
 

 

 

 

 

Programming ProconRulz 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Bambam 

      V43d.1 (17th Sept 2012) 



 

Table of Contents 
Programming ProconRulz ............................................................................................................... 1 

About ProconRulz ........................................................................................................................... 4 

Why ProconRulz is different from a typical Procon plugin ......................................................... 5 

The basics of creating your own rulz .............................................................................................. 6 

Entering your rulz into ProconRulz ................................................................................................. 8 

A typical ProconRulz rule ................................................................................................................ 9 

How that rule might be refined .................................................................................................. 9 

How does ProconRulz step through your rulz? ............................................................................ 11 

Using multi-line rulz .................................................................................................................. 12 

Applying actions to other players using TargetPlayer and TargetAction ..................................... 14 

How TargetPlayer is used.......................................................................................................... 14 

How TargetAction is used ......................................................................................................... 15 

Writing an In-game Admin Plugin ................................................................................................. 17 

In-game commands that don’t need a player name e.g. !yell <message> ............................... 17 

In-game commands that target one player e.g. !slay bam ....................................................... 17 

In-game commands with additional parameters e.g. !kick <player> <message> .................... 18 

Using variables in your rulz ........................................................................................................... 20 

Using substitution variables ...................................................................................................... 20 

Using counts .............................................................................................................................. 21 

Using rulz variables ................................................................................................................... 22 

Using indexed variables ............................................................................................................ 23 

The relationship between server, team, squad and player rulz variables ............................... 25 

Using the %team_score% variable ........................................................................................... 26 

Advanced use of the %team_score% variable: ..................................................................... 26 

Using “%ini_...%” variables to store longer-term values .......................................................... 28 

Example uses of %ini_...% variables ..................................................................................... 29 

Resetting your ini file ............................................................................................................ 29 

Arithmetic in your rulz .................................................................................................................. 30 

Using ‘rounding’ to decimal places for your variables ......................................................... 31 

Triggers, Conditions and Actions summary list ............................................................................. 32 



Triggers .......................................................................................................................................... 33 

Conditions ..................................................................................................................................... 34 

Actions .......................................................................................................................................... 36 

Appendix 1. List of substitution variables ..................................................................................... 37 

Appendix 2. List of all weapons, kits and specializations ............................................................. 40 

Kits ......................................................................................................................................... 40 

Weapons ............................................................................................................................... 40 

Damage ................................................................................................................................. 44 

Specializations ....................................................................................................................... 44 

Appendix 3. BF3 Maps .............................................................................................................. 45 

Appendix 4. BF3 Map Modes .................................................................................................... 46 

Appendix 5. Sample In-Game Admin Plugin using ProconRulz ................................................ 47 

Glossary ......................................................................................................................................... 48 

 

  



About ProconRulz 
ProconRulz is an admin utility to help manage game servers, written for Battlefield Bad 
Company 2 and subsequently updated for Battlefield 3. 

ProconRulz is implemented as a plugin that extends the functionality of the Procon rcon admin 
tool. 

The basic real-time data spewed out by a game server such as Battlefield includes messages 
such as “pebbles killed bambam with weapon M416 (Headshot)” and “Player bambam spawned 
as Recon with weapons M98S, M9 and specialization Squad Sprint”. The messages are 
formatted in a way that Procon and ProconRulz can sensibly interpret the data (although the 
messages are human-readable too). 

Given this data, ProconRulz provides the most flexible support possible for what an admin 
might want to do based on these events. The simplest example, e.g. to make the use of the 
RPG-7 suicidal, would ‘Kill’ any player that uses it: 

On Kill;Weapon RPG-7;Kill 

What ProconRulz will do is listen for the “player kill” event, note the Weapon the player has 
killed with (i.e. AUG, M416, RPG-7 whatever), if the player has used the RPG-7 then ProconRulz 
will Kill the player. So this results in the behavior most players are familiar with: you get auto-
slayed if you use a banned weapon… 

If you think you’ve got the concept and want to get started writing your rulz, then you can see 
Appendix 1 and 2 for the actual weapon keys etc. available to use. 

  

http://phogue.net/


 

Why ProconRulz is different from a typical Procon plugin 
 

ProconRulz is best thought of as a meta-plugin, i.e. it is a plugin that allows a broad set of users 
to create new plugins. If you want a “no hand-grenades plugin”, fine, you can do that with a 
single rule. Procon users can install a purpose-built plugin to provide a “TeamKill Limiter” for 
example, or can use ProconRulz with a couple of appropriate text rulz that provide that 
functionality. Other users’ rulz can be simply cut-and-paste into your rule set so you can easily 
add for example a “Quake KillStreak Announcer”. If you grasp the basics of the rule format, you 
can easily adjust other users’ rulz to display different messages, or tweak limit thresholds so, for 
example, you punish after 3 teamkills not 5. 

A simple one-line rule is all that it takes to put a hard limit on something the server admin 
wants to control. But ProconRulz is treating the list of rulz as a script and if you understand the 
control flow you can program fairly complex behavior to achieve exactly the results you want. 

For example you can give a warning message on the first couple of kills, maybe auto-slay the 
player for a few kills after that, and if they persist in using a limited weapon you can kick them 
of the server or ban them. 

You can write rules that punish a player for using a weapon not in a desired set, e.g. with a 
single rule you can have a pistols-only server, or knives-only, or snipers and pistols. 

You can write messages in-game based on any set of conditions you detect occurring. 

ProconRulz has a generic ‘Exec’ action that supports any server command (e.g. to update server 
variables such as max permitted players, or vehicles allowed, or restart round), in additional to 
simple one-word actions such as Kill, Kick, Ban, Say. 

ProconRulz can act upon the event of a player entering ‘say’ text into the game server, so 
players can directly trigger ProconRulz actions. The means you can write your own in-game 
admin commands. 

For these reasons ProconRulz is most fairly described as a meta-plugin. With the use of 
appropriate rulz, much functionality can be supported that otherwise would need a complete 
new plugin to be written. 

  



The basics of creating your own rulz 
Firstly you want to understand the data your rulz are actually working with. Procon will divide 
most game data into Kit, Weapon, Damage and Specializations. Appendix 2 lists the actual real 
values available for these in Battlefield 3, and the values for whatever game you are using will 
be dynamically displayed in the ProconRulz plugin ‘Details’ tab within the Procon client. 

Weapon is what it says, i.e. the killing tool of choice. Most games will provide Weapon data 
when they are reporting a player spawning or a kill occurring in the game. 

Damage is the effect a weapon has done. Many weapons do the same kind of Damage, e.g. all 
pistols do damage “Handgun”. Other common damage types are “SniperRifle” or 
“ProjectileExplosive”. This is convenient if you want a rule that affects all types of sniper rifle – 
in this case you design the rule to check for the Damage, not the actual Weapon. 

Kit (not BF3) is generally the ‘player type’ the gamer has selected in their options, e.g. Assault, 
Medic, Engineer. Generally when the player spawns, the Kit data will be made available to the 
admin plugin (but not currently in BF3, which is a significant limitation for admin rulz). 

Specializations (not BF3) are the general term for the fancy stuff you can tweak your player or 
weapons loadout with typically just before you load your player into the game. These include 
things such as a “sprint” ability or “sabot shotgun rounds”. As with Kit, this information is 
delivered fine in most games but not BF3. 

You will be able to most effectively use ProconRulz if you understand the concepts of events, 

triggers, conditions and actions. 

Events are continually being sent from the game server to the Procon admin tool. Different 

games may generate different events at different times, but there’s a broad consistency. When 

a player spawns into a game the game server will send a “player spawned” packet of 

information to the admin tool (which we think of as the “player spawned event”). Game servers 

vary in the data they send in this packet of data: BFBC2 sent the name of the player, plus 

information about the options selected by the player i.e. Kit, Weapons, Specializations. BF3 only 

sends the player name at spawn, plus Weapon information in a kill. Other games (particularly 

BFBC2 provide a complete set of data for each event). 

Triggers are used in ProconRulz to associate a rule with a particular event in the game. By far 

the most common events are “spawn” and “kill”. So if a rule begins “On Kill;…”, that rule will 

only be applied to the data that arrives from kill Events. 

Conditions are used in rulz to test the data provided in the Event. In every game the Kill Event 

does include the Weapon (and Damage) information (even BF3…), so if you want a rule to apply 

when a player kills with a sniper rifle you can use “On Kill;Damage SniperRifle;…” 



Actions are commands that can be sent to the game server to make something happen in the 

game. The most common actions you would want to use include killing a player (this is the “Kill” 

action, not to be confused with the “On Kill” trigger), kicking a player, banning a player, or 

having a ‘chat’ message appear in the game (this is the “Say” action).So if you want to nerf the 

use of sniper rifles on your server, you can do this with the single rule: 

On Kill; Damage SniperRifle; Say No snipers on this server; Kill 

Hopefully this rule is now crystal clear… when a Kill Event occurs, ProconRulz will check to see if 

the Damage was caused by a sniper rifle, if so it will put a chat message into the game 

reminding players no sniper rifles are allowed, and Kill the player that triggered the rule (i.e. did 

the kill in this case). 

As a final introductory point, you can reverse the meaning of most conditions with a keyword 

“Not”, e.g. “Not Damage SniperRifle” will check that the damage caused was not the type of 

damage done by a sniper rifle. So having a snipers-only server is equally simple: 

On Kill; Not Damage SniperRifle; Say Snipers-only on this server; Kill 

  



Entering your rulz into ProconRulz 
 

Rulz are entered into ProconRulz via the Plugins / Settings tab. The screenshot below shows the 

settings for the ProconRulz plugin running on a Procon Layer Server (accessed via the “Parent 

Control Layer” tab). If you are running ProconRulz on your desktop (which works perfectly well) 

then you will find the plugin under a top-level ‘Plugins’ tab not shown in the screenshot, but the 

window is otherwise the same. 

To enter your rulz, just click 1..5 as highlighted below. When ProconRulz is installed, you will 

have quite a few default rulz in the “Rules” setting – none of these are essential, they’re just 

examples. If you want to test your setting, try adding a rule at the top of the Rules setting: 

On Say;Text test;Say Hello World 

Now, within the game, chat the word “test”, and you will see ProconRulz echo back the 

message “Hello World”. Congratulations, you’re a ProconRulz programmer. 

 



A typical ProconRulz rule 
 

This is a fairly typical rule that will display a message such as “bambam stabbed slartibartfast” 

each time a knife kill occurs: 

On Kill; Weapon Weapons/weapon/knife; Say %p% stabbed %v% 

The underlying format of ProconRulz rules is always the same: *trigger+*conditions…+*actions…+. 

Taking this rule as an example, the component parts are: 

On Kill: this is the trigger, i.e. the type of event that will trigger this rule to be tested. A full list 

of the permitted triggers is given in an appendix. 

Weapon Weapons/weapon/knife: this is the condition that will be tested after the trigger has 

been confirmed, i.e. on a kill event. The weapon used in the kill event will be compared with 

“Weapons/weapon/knife” and if there’s a match then the condition will succeed and processing 

of this rule will continue. The list of the weapons available in BF3 is given in an appendix. 

Say %p% stabbed %v%: this is the action, i.e. the rcon admin command that you want to be 

executed for this trigger when all the conditions succeed, in this case the ‘Say’ action. The 

format of ProconRulz actions is that the first word defines the action (i.e. “Say”) while the rest 

of the clause gives information the action might use, typically a message in this case “%p% 

stabbed %v%”. The full list of available actions is given in an appendix. 

%p%, %v%: these are substitution variables. ProconRulz will replace %<…>% with an associated 

value calculated in real-time from the stream of data coming from the game server. The most 

common substitution variable is %p% which is replaced with the name of the player that 

triggered the current rule, e.g. on a Kill, it is the name of the killer. A full list of the substitution 

variables is given in an appendix. 

How that rule might be refined 
The rule above has a single condition, i.e. Weapon Weapons/weapon/knife. This condition can 

be extended to allow multiple weapon keys, and additional conditions can be added. 

In programming ProconRulz, it becomes necessary to learn the behaviour of the game you are 

actually programming the rulz for… as a particular example, BF3 actually has multiple knife 

weapons (as of July 2012):  

1. Weapons/weapon/knife 

2. Melee 

3. Knife_RazorBlade 



When you stab a player, BF3 may use either of the first two, seemingly at random (actually the 

choice depends on the animation…). If you are a Premium player, then weapon #3 might be 

used. ProconRulz allows you to specify alternatives in most rule conditions by separating the 

values with commas, i.e. Weapon Weapons/weapon/knife,Melee,Knife_RazorBlade; A fairly 

typical ProconRulz noob mistake is to confuse the “Weapon” of the condition name with the 

first part of the #1 weapon key, which coincidentally happens to be the string “Weapons”. All 

ProconRulz conditions are of the format <condition name> key#1,key#2,… 

 But your rule above can be extended to capture both weapons by using the ‘alternate key’ 

capability of ProconRulz conditions, i.e. you can specify multiple alternate keys in a Weapon 

condition, separated with comma: 

On Kill; Weapon Weapons/weapon/knife,Melee,Knife_RazorBlade; Say %p% stabbed %v% 

Please note that spaces are not permitted in weapon keys or either side of the comma. So the 

rule above will succeed for a kill either with Weapon Melee, or with Weapon 

Weapons/weapon/knife or with Weapon Knife_RazorBlade. Note that you can achieve a similar 

thing by using multiple rulz: 

On Kill; Weapon Weapons/weapon/knife; Say %p% stabbed %v% 

On Kill; Weapon Melee; Say %p% stabbed %v% 

On Kill; Weapon Knife_RazorBlade; Say %p% stabbed %v% 

  



How does ProconRulz step through your rulz? 
 

The example above describes the processing of a single rule, i.e. left-to-right, starting with the 

trigger, then testing the conditions and finally applying the actions. It is possible for you to get 

value out of ProconRulz with a single rule (perhaps for each trigger), and if that is all you have 

then you don’t have to worry about how ProconRulz processes multiple rulz. 

However, for more complex auto-administration, it is likely you will want to have ProconRulz 

test for multiple combinations of conditions and apply your chosen actions in a variety of 

circumstances (e.g. you might want your rulz to auto-kill a player after they have committed 3 

teamkills, but you might want to have them auto-kicked after 5 teamkills). In this case it is 

essential you understand how ProconRulz steps through multiple rulz. We’ll use the following 

example rule set (the rule numbers are not part of the rulz, just here to help the explanation): 

1. On Spawn; Teamsize 4; Say %p% spawned on team %pt% (teams are small) 

2. On Kill; Weapon Weapons/weapon/knife; Say Knife kill by %p% 

3. On Spawn; Say %p% spawned 

4. On Kill; Map Subway; Damage ProjectileExplosive; Say %p% no rockets on Metro; Kill 

5. On Kill; Damage ProjectileExplosive; Say %p% rocket killed %v% 

Let’s assume the following event has occurred: [bambam has killed slartibartfast with the 

SMAW anti-tank RPG+ (and we’ll assume the current map is “Teheran Highway”) 

Firstly, this is a “Kill” event, so for the processing of this event any rule that does not have an 

“On Kill” trigger is irrelevant for our purposes, and ProconRulz will effectively process the event 

with just the following subset of the rulz: 

2. On Kill; Weapon Weapons/weapon/knife; Say Knife kill by %p% 

4. On Kill; Map Subway; Damage ProjectileExplosive; Say %p% no rockets on Metro; Kill 

5. On Kill; Damage ProjectileExplosive; Say %p% rocket killed %v% 

So ProconRulz will start with rule #2, the “On Kill” trigger is good, so next ProconRulz will check 

the “Weapon Weapons/weapon/knife” condition, using the “SMAW” weapon key from the kill 

event. This condition will fail (the weapons do not match). ProconRulz will proceed no further 

with rule #2 and continue to the next rule with a matching trigger, i.e. rule #4. 



Moving in to rule #4, ProconRulz will check the “Map Subway” condition, which will try and find 

the string “Subway” embedded in either the file name or map display name of the current map 

(“Teheran Highway, filename MP_003). This substring will not be found and the condition will 

fail. ProconRulz will proceed no further with rule #4 and continue to the next rule with a 

matching trigger, i.e. rule #5. 

Using multi-line rulz 
To improve the clarity of longer rulz, or more complex sets of rulz, ProconRulz has a system of 

allowing the processing for a single event to flow from one rule to the next. 

Multi-line rulz copying a trigger from above 
A rule without a trigger will be treated as if the first rule above that does have a trigger is 

joined onto the front. 

So if you have (for example) three rulz that should all be triggered by a sniper rifle kill event, 

you could use: 

On Kill; Damage SniperRifle 

 PlayerCount 3; Kick 

 PlayerCount 1; Kill 

 Say No snipers on this server, %p% !! 

This is exactly equivalent to: 

On Kill; Damage SniperRifle 

On Kill; Damage SniperRifle; PlayerCount 3; Kick 

On Kill; Damage SniperRifle; PlayerCount 1; Kill 

On Kill; Damage SniperRifle; Say No snipers on this server, %p% !! 

On the 4th sniper kill the player will be kicked, on the 2nd they’ll be killed, and on the 1st they’ll 

be given a warning. Note that the first rule in this series is effectively a “do nothing” – it exists 

purely to set up the trigger and condition for the following rulz. 

To summarize this ‘trigger propagation’ between multi-line rulz, see this symbolic example: 

On X;A;B  goes to  On X;A;B 

C;D     On X;A;B;C;D 



E;F     On X;A;B;E;F 

Please note with this technique, the actual number of rulz you have will equal the number of 

lines in your rulz. I.e. if the first line has a trigger (e.g. On Kill) and the following lines don’t, then 

you end up with multiple rulz, each with an On Kill trigger. 

Multi-line rulz using ‘+’ as a simple continuation character 
In addition to this ‘trigger propagation’ between multi-line rulz, ProconRulz allows rulz to be 

continued across multiple lines by starting subsequent lines with a ‘+’. 

Like the ‘trigger propagation’ for multi-line rulz described above, this is a convenience for the 

layout of your rulz and does not affect the way ProconRulz actually processes the rulz after the 

‘+’ lines are joined together. 

For example: 

On Kill;Weapon SMAW 

+ Log %p% killed %v% with SMAW 

+  Kill 

Is exactly the same as 

On Kill;Weapon SMAW; Log %p% killed %v% with SMAW;Kill 

I.e. the lines with ‘+’ as the first character are joined onto the line above. Using a similar 

abstract example to the ‘trigger propagation’ example above: 

On X;A;B 

+ C;D 

+ E;F  all goes to On X;A;B;C;D;E;F 

Unlike the ‘trigger propagation’ technique described before, ‘+’ characters will convert multiple 

lines into a single rule. 

  



Applying actions to other players using TargetPlayer and TargetAction 
 

By default, ProconRulz is applying actions in the rule to the player that triggered the rule. This 
behavior is so common that many ProconRulz users don’t even have to think about it. E.g. in 
the following rule: 

On TeamKill;Damage ProjectileExplosive;Kill 

The “Kill” action highlighted in bold is applied to the player that triggered the TeamKill event 
with a weapon that causes damage “ProjectileExplosive”. The point of the TargetAction 
condition is to obtain a valid player name for an in-game player either from a rulz variable or 
from some player chat, and to apply some actions to the player thus identified (using the 
TargetAction action). As in the example in green above, if you only want to apply an action to 
the player that triggered the rule (e.g. slay a player that teamkills) then you can just use the 
basic actions like Kill, Kick, Ban and not worry about TargetPlayer/TargetAction at all. 

How TargetPlayer is used 
TargetPlayer [<string>] is used to set up the PlayerName that any TargetAction in the same rule 

is aimed at, in a substitution variable called %t%. By far the most common use is the simple 

condition “TargetPlayer” – this will match a valid playername to the text in a current “On Say” 

rule. The simplest (artificial) example would be to display the name of the target player in the 

chat window when the round starts: 

On Round;TargetPlayer bambam;Say The target player is [%t%] 

Remember this is a trivial artificial example, using the playername hardcoded in the 

TargetPlayer condition, although it will work.  

1. When the map loads, the On Round trigger will fire, this rule will get executed,  

2. The “TargetPlayer bambam” condition will scan the names of all players on the server 

looking for a name that contains “bambam”. Assuming I am on the server, this will 

succeed, setting %t% equal to “bambam”.  

3. The “Say” action will then be executed, sending the chat message “The target player is 

[bambam]”. 

The example above doesn’t actually use any ‘TargetAction’s (i.e. applying an action to the 

chosen player), but the TargetPlayer condition still does what it is supposed to do and 

populates the %t% variable with the chosen PlayerName. 

If the optional string is given, then that is used to scan the current in-game players to try and 

match it in a name of a player. Generally if a string is used it will be the exact name of a player 



either literally (e.g. "TargetPlayer bambam"), or by using a variable ("TargetPlayer %v%"). %t% 

then contains the name of the player matched. 

TargetPlayer can conveniently be used with a variable giving the string of the player name, 

most simply in the case of the victim of a kill, i.e. “TargetPlayer %v%”. Equally, rulz variables can 

be set with a player name in some prior execution of a rule, and then inserted in the 

TargetPlayer condition here (we will talk more about rulz variables in a later section). 

If the optional string is NOT given, then it is assumed this rule has an On Say trigger and 

TargetPlayer will search the %text% player chat value for a string that matches a single player 

name. For example: 

On Say;Admin;Text !kill;TargetPlayer;PlayerSay Kill %t% confirmed;TargetAction Kill 

As a slight enhancement, if you have a "Text" condition before TargetPlayer in the same rule, 

TargetPlayer will only search for a PlayerName AFTER the matching text in the player chat. In 

the rule above, given player chat “!kill bam", ProconRulz will look for a PlayerName matching 

the player chat text starting from the letter "b" (i.e. will use the string "bam" to search 

ANYWHERE in any of the PlayerNames of the players currently on the server). 

TargetPlayer ONLY succeeds if it matches a single player. If it matches no players, or matches 

multiple players, then it fails. (The action from prior versions of ProconRulz TargetConfirm is no 

longer needed in ProconRulz (it does nothing)). 

So in the example in green above, TargetPlayer should succeed with a player target of 

“bambam” written into the substitution variable %t%, and any subsequent TargetAction will 

use “bambam” as the player that the action should be applied to, as explained further below. 

How TargetAction is used 
TargetAction <action> is the way you tell ProconRulz "apply this action to the TargetPlayer 

target player with the name stored in %t%, not the usual %p% that triggered this whole rule".  

So with the latest version of ProconRulz, a rule could mix actions for just about anybody, using 

pairs of TargetPlayer and TargetAction clauses plus also any simple actions on the %p%. The 

only way I've seen this commonly used is with a single TargetPlayer, plus also simple actions 

affecting %p%. For example on a TeamKill, IF you wanted to kill the teamkiller AND do a 

PlayerSay action to the victim (ignore the fact that PlayerSay is limited in BF3):  

On TeamKill;Kill;TargetPlayer %v%;TargetAction PlayerSay Admin slayed %p% that TK'd you 

Assuming a teamkill has occurred in the game e.g. “slarti teamkilled bambam with SMAW” 

then the execution of the rule above proceeds in the following steps: 



1. Running down the list of rulz, those with “On xxx” triggers that are not TeamKill are 

skipped. 

2. This “On TeamKill” trigger succeeds, and ProconRulz proceeds left-to-right in the rule. 

3. “Kill” is an action that sends an admin command to slay the player that triggered this 

event, in this case slarti so that player is killed. 

4. “TargetPlayer %v%” goes through a variable substitution step with %v% replaced with 

the player name of the victim of the teamkill. Given the example event (“slarti 

teamkilled bambam with SMAW”), the victim  is bambam, so %v% is assigned the value 

“bambam” and hence ProconRulz executes “TargetPlayer bambam”. This succeeds (we 

can assume a player called bambam is in the game, he was just TK’d..,) assigning a 

variable %t% the value “bambam”. 

5. The last clause in the rule is “TargetAction PlayerSay Admin slayed %p% that TK'd you”. 

The TargetAction first word modifies the action to be applied to the player name in %t% 

(i.e. “bambam”) rather than the usual default %p% (the player who triggered the action, 

in this case “slarti”). So the PlayerSay command is applied to player “bambam”. As with 

the previous TargetPlayer step, the command is passed through a variable substitution 

step in which %p% is replaced with “slarti”, and bambam will see the chat text “Admin 

slayed slarti that TK’d you” 

  



Writing an In-game Admin Plugin 
 

ProconRulz can be used easily to write a flexible in-game admin plugin, i.e. the kind of thing 
where a clan member in the game can chat something like “!kick bam” with the result that 
player bambam gets ejected from the server. 

A sample set of rulz for an in-game admin plugin is provided in Appendix 5. 

These examples use the same format for command names as the default in-game admin plugin 
(i.e. !<command name>). So if you want to use this format, disable that plugin. Or choose a 
different format for your test command names (like “xpyell” instead of “!pyell”). 

Let’s build up an in-game admin plugin a rule at a time. 

In-game commands that don’t need a player name e.g. !yell <message> 
Firstly, your rulz need to recognise when an admin player has said the name of a command. E.g. 
you could implement a “!yell” command that yells a message to all players telling them not to 
camp. Note that there is nothing special about the “!” character as far as ProconRulz is 
concerned – it’s just a letter you decided to include in the command name. 

An On Say trigger will be used to detect when any player has said anything (i.e. including any 
admins). An Admin condition can be added if desired to limit the rest of the rule to only apply 
to chat from players defined as an administrator to Procon. A Text condition can be used to test 
whether the chat text contains a particular string (i.e. !yell). Finally a Yell command will output 
the desired message to all players. I.e. the complete rule would be 

On Say;Admin;Text !yell;Yell %targettext% 

Congratulations, you’ve just written an in-game admin plugin. Limited, I admit, but hey at least 
you didn’t have to write 1000 lines of C#. But wait, there’s more. 

In-game commands that target one player e.g. !slay bam 
The most obvious requirement is that your in-game admin will want to enter a command that 
applies a command (e.g. Kill) to a particular player. This is where the TargetPlayer condition 
gets used, as described in the previous section. Many ProconRulz simply default to applying 
actions to the player that triggered the rule, and ProconRulz is considerably simplified as a 
result (this player can often be thought of as %p%). The TargetPlayer action switches the target 
of any ProconRulz actions to a playername extracted from a chat message that triggered an On 
Chat rule, stored in the %t% variable (this is a recap of the previous section). 

So let’s keep the “!yell” in-game command, and add another command to slay any player in the 
game. We’ll choose an in-game command name “!slay” for this command, with the usage being 
to follow this command string with the name (or part of the name) of the player you want to 
slay (i.e. kill). We’ll use the Admin condition to limit this rule to only apply to chat coming from 
players defined in Procon as an admin as with the “!camp” command above, and we’ll use the 



TargetPlayer condition to dig a valid player name out of the chat text. Slaying the selected 
player is done simply with the Kill action. 

On Say;Admin;Text !slay;TargetPlayer;Kill 

You can dress things up a bit with in-game Say or Yell messages when you slay people, but if all 
you ever want to do is rulz of the above format then you’re good to go and need read this 
section no further. 

In-game commands with additional parameters e.g. !kick <player> <message> 
ProconRulz as of version 41 can actually pick out additional bits of an in-game command and 
use them in the actions, e.g. you can (as of v41) enter a command such as “!kick bam too much 
whining” and use the “too much whining” part of the chat text in your rule. It will help to 
understand how ProconRulz uses a couple of important variables %text%, %targettext% and 
%t% to achieve this aim. 

We’ll start with a complete “!kick” command rule and show how it is processed. Assume an in-
game admin has typed “!kick bam too much whining” and you have the following rule: 

On Say;Admin;Text !kick;TargetPlayer;TargetAction Kick %targettext% 

When the admin chats any message, this rule will be fired because it has an “On Say” trigger. An 
important detail is the chat text will be available to the rule in a variable called %text% (see 
Appendix 1 for a list of all the built-in variables). So now %text% will contain “!kick bam too 
much whining”. 

The Admin condition will succeed as expected for this ‘admin’ player as before. 

The Text !kick condition will search the %text% variable to try and find the substring “!kick”. 
This condition will succeed (matching the first 5 letters of %text%), and the Text condition will 
initialize a new value for another variable %targettext% containing the content of %text% after 
the occurrence of “!kick”, i.e. %targettext% will be “bam too much whining” (leading spaces are 
trimmed). So %text% -> Text condition -> %targettext%. 

So far, so good. A text condition has successfully narrowed down this rule to situations where 
an admin has typed “!kick”, and we’ve stored the rest of the text in a variable %targettext%. 

The TargetPlayer condition is going to use the text stored in %targettext% (hence the name of 
the variable) to search the list of currrent in-game playernames and try and find a match. If 
%targettext% has space in it (as of v41), TargetPlayer will just use the first word in %targettext% 
to use for the search. %targettext% is “bam too much whining” so in this case TargetPlayer will 
search with “bam”. 

The TargetPlayer condition succeeds if it finds a playername match for a single player, in this 
case assume player Bambam is online, so it succeeds. At this point the new variable %t% is 
initialized with this playername, i.e. %t% = “Bambam”. Also, TargetPlayer will (as of v41) update 



the %targettext% variable to leave it with the text remaining after the word used in the 
playername search, i.e. %targettext% is now “too much whining”. 

The remaining action “TargetAction Kick %targettext%” applied the kick action to the player 
defined as a target in %t% (i.e. Bambam), giving the reason “too much whining”. 

In summary 

On Say   %text% = “!kick bam too much whining” 

Text !kick  %targettext% = “bam too much whining” 

TargetPlayer  %t% = Bambam (having used “bam” from %targettext% for search) 

   %targettext% = “too much whining” 

TargetAction Kick %targettext%  kicks Bambam with reason “too much whining”. 

So that is how you end up with the rule for !kick: 

On Say;Admin;Text !kick;TargetPlayer;TargetAction Kick %targettext% 

The exact same format would be used for a player yell rule: 

On Say;Admin;Text !pyell;TargetPlayer;TargetAction PlayerYell %targettext% 

  



Using variables in your rulz 
 

The power of ProconRulz is significantly enhanced through the support for variables that can 

store values. There are two types of variable, although both types are used similarly in rulz: 

1. Substitution variables are automatically populated by ProconRulz to hold the correct 

values during the execution of each rule. The full list of substitution variables is given in 

Appendix 1, but most common examples include %p% for the player name of the player 

that triggered the rule, %v% for the player name of a victim in a kill, or %c% for the 

count of the number of times the current rule has been triggered by the current player. 

2. Rulz variables are created by the person that entered the rulz into the ProconRulz 

settings. The format of the variable name is the same as for substitution variables (i.e. 

%<varname>%). A value is stored into a rulz variable explicitly during the execution of a 

rule via the use of “Set”, “Incr” or “Decr” clauses. After the value of a rulz variable is set, 

that value is accessible in any rule at any time during a round. So rulz variables can be 

used to accumulate a count of how many times a player has used a particular weapon, 

for example, or the name of the player that last killed somebody. Rulz variables can be 

used that very easily accumulate counts for a player, squad, team, or the whole server. 

Using substitution variables 
Appendix 1 lists the available substitution variables. For example, the most common 

substitution variable used is %p%, the name of the player that triggered the current rule. 

Wherever %p% appears in the rule, ProconRulz will replace (i.e. substitute) %p% with the player 

name. For example: 

On Spawn;Say Player %p% just spawned 

In this example, when the player with the name “bambam” spawns into the game, the “On 

Spawn” trigger will fire and ProconRulz will execute the “Say” action in the rule, resulting in the 

following text appearing in the in-game chat window: 

 Player bambam just spawned 

%p% is not the only substitution variable that can contain a player name. In an “On Kill” event, 

the player name of the victim is recorded in a substitution variable called %v%. 

A possible misunderstanding is that the use of %p% somehow affects the target of a 

Kill/Kick/Ban action. In the action “Kick %p% kicked for hacking“, %p% has no influence on who 

is kicked. The Kick action is format “Kick <message>”, in this case the message is “%p% kicked 

for hacking”, which becomes “bambam kicked for hacking. 



Mostly, the other substitution variables just contain useful stuff available in the event that 

triggered the rule, e.g. %w% for the weapon used in a kill/teamkill/suicide. 

Using counts 
Many rulz use the concept of count, and ProconRulz has built-in support to make the use of 

counts more convenient. Rather than specifically counting the number of kills with each 

weapon, or the number of spawns by each player, etc, ProconRulz has a simple general-purpose 

method of keeping a count of each time each player has triggered each rule.  

In any given rule, the substitution variable %c% (of which more later in this section) contains 

this count. E.g. 

On Kill;Weapon SMAW;Say Player %p% has killed with the SMAW %c% times 

The first time I kill someone with the SMAW, the say action will have “1” substituted for %c%. 

The second time it will be “2” etc.  The count can be tested using conditions such as 

PlayerCount (also of which more later in this section). 

The next section will discuss completely general-purpose rulz variables and any count could be 

implemented using those, but ProconRulz has the following convenience features where the 

most common usage is required: 

PlayerCount N: this is a condition that succeeds if the current player has triggered this rule 

already N times (i.e. this event is the N+1th or higher).  So in a rule 

On Kill;PlayerCount 3;Say Player %p% has more than 3 kills 

The chat message “Player bambam has more than 3 kills” will appear on each kill by bambam 

after the third. 

%c%: This substitution variable contains the actual count of the number of times the current 

player has triggered the current rule. So the above rule could be modified to: 

On Kill;PlayerCount 3;Say Player %p% has more than 3 kills (actual count is %c%) 

The typical application is to Kill players that exceed a threshold, if you want to reduce players 

‘spamming’ a particular weapon. 

TeamCount, ServerCount: In addition to PlayerCount and %c% for the current player, 

ProconRulz maintains counts for the team (TeamCount and %tc%) and also for the server 

(ServerCount and %sc%). 



Using rulz variables 
In addition to using the pre-defined ProconRulz substitution variables (%p%, %v% etc), admins 

that write ProconRulz rulz can embed their own variable values. These general-purpose 

variables can be given any arbitrary %<name>% by the admin and are called “rulz variables” 

(just to differentiate them from fixed-definition substitution variables described above) 

All rulz variables are conveniently set to “0” when the round starts, and can be incremented 

using the “Incr %varname%” statement. Other useful statements include Set, Decr and If, which 

are described later in this section. 

As with PlayerCount and %c%, the most simple use of these variables can be per-player and 

that is the default way rulz variables are treated. So if you have a rule: 

On Kill;Incr %kills%;Say Player %p% has %kills% kills 

When player “bambam” triggers their first kill event (i.e. they kill their first player in-game), the 

%kills% variable for player bambam will be incremented from “0” to “1” and a chat message 

will appear: 

 Player bambam has 1 kills 

On the second kill, %kills% for bambam is incremented again, and players see: 

 Player bambam has 2 kills 

If another player makes a kill, then their %kills% variable is incremented, not affecting the count 

for bambam, so you could subsequently see a message in game:  

 Player pebbles has 1 kills 

Decr %varname% will reduce the value of %varname% by one, but will not reduce the value 

below zero. 

Set %varname% <value> will assign the value of <value> to the variable %varname%. Note that 

<value> can be a number or literal string (not containing spaces), or can be a substitution 

variable, rulz variable or combination of those. For example, a TeamKill rule might be used to 

set a variable containing the name of the victim most recently killed by the current player: 

On TeamKill;Set %tked% %v% 

This isn’t a huge amount of use on its own, but opens up the possibility of another rule using 

this variable, e.g. if a player wants to know the name of the last player they teamkilled, you 

could give them a chat message with the rule: 



On Say;Text !tk;Say %p% your most recently tk was %tked% 

If player bambam teamkills pebbles, then %tked% for player bambam will be set to “pebbles”, 

and when bambam types the chat “!tk” the following message will appear:  

 bambam your most recent tk was pebbles 

That just about covers it for per-player rulz variables. These are useful for per-player counts and 

a few other uses, but would be insufficient on their own. 

ProconRulz also supports per-squad, per-team and per-server rulz variables. The easiest 

comparison with the per-player variables discussed so far is with per-server rulz variables. 

These are created using a simple naming convention, by naming the variable anything starting 

“%server_” (names must also end with “%”). 

Rulz variables beginning “%server_”, e.g. “%server_kills%” are stored once  in the server, i.e. all 

players share the same variable. The simple per-player kill counter given in the first example in 

this section could be changed to use %server_kills% instead of %kills%: 

On Kill;Incr %server_kills%;Say We have counted %server_kills% kills 

When player “bambam” triggers their first kill event (i.e. they kill their first player in-game), the 

%server_kills% variable (shared by all players) will be incremented from “0” to “1” and a chat 

message will appear: 

 We have counted 1 kills 

On the second kill, %server_kills% is incremented again, and players see: 

 We have counted 2 kills 

If another player makes a kill, then the same %server_kills% variable is incremented, so you 

could subsequently see a message in game:  

 We have counted 3 kills 

Squad and team rulz variables work exactly the same, prefixed with “%squad_” and “%team_” 

respectively, this time the variable will be shared across a squad or team. 

Using indexed variables 
The ‘per-player’ rulz variables described above are convenient, particularly when accumulating 

some per-player count, but ProconRulz allows you to be explicit about associating a player 

name (in fact any other variable value) with a rulz variable. This is a very powerful feature 



worth taking the time to understand (it’s not too complicated) and easiest to illustrate using 

per-server rulz variables. An indexed variable is used in the following rule: 

On TeamKill;Set %server_tked[%p%]% %v% 

The indexed variable is %server_tked[%p%]% with the [%p%] embedded in the variable name.  

Given a teamkill event in which player “bambam” kills “pebbles”, substitutions will be applied 

within the Set statement so it will actually be Set %server_tked[bambam]% pebbles. In effect, 

this sets a per-server rulz variable called %server_tked*bambam+% to the value “pebbles”. At 

this point we’re in a similar situation to what was achieved earlier using per-player rulz 

variables, i.e. bambam can display the name of the player he tk’d via the following rule:  

On Say;Text !tk;Say %p% you most recently teamkilled %server_tked[%p%]% 

The important difference is that with the indexed variables we are able to be explicit about 

which player name we’re indexing with (it doesn’t always have to be the name of the player 

that triggered the rule). So the following pair of rulz allow the victim to display the name of 

their killer:  

On TeamKill;Set %server_tker[%v%]% %p% 

On Say;Text !tk;Say %p% you were most recently tked by %server_tker[%p%]% 

If you look at the first of the two rulz, you see %p% and %v% are reversed from before. The 

indexed variable %server_tker[<playername>]% now contains the name of the player that most 

recently tk’d playername. I.e. the variable is indexed using the victim not the killer, and the 

value stored is the name of the killer, not the victim as before. If you try the substitutions on 

the Set statement when “bambam teamkills pebbles” hopefully this will become clear. 

The use of indexed variables using %v% and %p% appropriately is extremely valuable to 

understand if you want to write sophisticated rulz. With this you can design ProconRulz that do 

almost anything, e.g. you can effectively keep track of player names to implement in-game 

commands such as !voteban or !punish. 

Indexed variables are not limited to just using [%p%] and [%v%] although that is the most 

common and probably the most powerful. Per-weapon counts could be implemented using a 

variable such as %server_kills[%w%]%, and these rulz variable can themselves be used as 

indexes as in %server_kills[%killer_name%]%. 

Please note that multiple indexes can be used in the same variable (although I don’t know of a 

use for this yet) and the format is to put each index in their own square brackets, e.g. 



%server_kills[%w%][%p%]%. That example might be used to collect counts for each player with 

each weapon. 

The relationship between server, team, squad and player rulz variables 
Without wishing to make a drama out of this, the use of per-player variables is designed to be 

exactly equivalent to the use of “%server_” variables indexed with the player name. 

E.g. %kills% and %server_kills[%p%]% could be used interchangeably. 

Similarly, a per-team variable such as %team_kills% is equivalent to %server_team_kills[<team 

id>]% and %squad_kills% is equivalent to %server_squad_kills[<team id>][<squad id>]%. These 

two cases are likely to be much less useful than the per-player/per-server equivalence. 

  



Using the %team_score% variable 
This holds the number of tickets remaining for each team, and is updated about once every 30 

seconds from the game server. 

This is the figure displayed on the Procon 'players' tab as the score at the top of each team. 

So if, for example, a player spawns, the number of tickets remaining for that player's team 

could be displayed with a rule (%pt% is the name of the player's team, e.g. US Army): 

On Spawn;Say Tickets left for %pt% is %team_score% 

This would display (an annoying) say-text message on each spawn e.g. Tickets left for US Army 

is 37. 

This is a team variable (it begins "team_") which means by default it applies to the current 

player's team (that triggered the rule). 

ProconRulz allows the value for any team to be accessed in any rule by referring to the same 

variable as %server_team_score[<team number>]%. Teams are numbered 1,2,... (Conquest and 

Rush are just 1 and 2). 

So if you want to display the ticket count for both teams in a single rule you can do this with 

On Spawn;Log Team 1 tickets = %server_team_score[1]%, Team 2 tickets = 

%server_team_score[2]% 

This would say Team 1 tickets = 37, Team 2 tickets = 55 

Note you still need an event to trigger the rule in the first place, and "On Spawn" probably 

makes sense although you could also use "On Kill". People might ask for a 'timer' event but it is 

not currently my intention to provide this in ProconRulz. 

Note that %team_score% is only accurate on a ~30-second basis - the game server is updating 

the ticket count according to both spawns and an internal formula that counts down tickets 

when bases are captured by the enemy. 

Advanced use of the %team_score% variable: 
You can use your own variable within your rulz that update a ticket count (using spawns) 

between updates to %team_score% from the game server to refine the %team_score% figure 

within your rulz if you want slightly more granularity. I.e. if on a 30-second interval the 

%team_score% is updated to 50, and you know two players have spawned since, then you can 

estimate the new team score is 48. This is a better value that the 30-second-old update but 



until you get the next proper update from the game server you can't be sure what the exact 

ticket count will be. 

Here is an (untested) example where you maintain your ticket count in a per-team variable 

called %team_tickets%, which you can than use as an ‘improved’ version of the built-in 

%team_score%. 

# INITIALIZE YOUR TICKET COUNT TO WHATEVER YOUR CORRECT START FIGURE IS 
On Round;Map Baz;Set %team_tickets% 250 
 
# ADJUST YOUR TICKET COUNT TO %TEAM_SCORE% IF THAT IS LOWER 
On Spawn;If %team_tickets% > %team_score%;Set %team_tickets% %team_score% 
 
# DECREMENT YOUR %TEAM_TICKETS% WHEN SOMEONE SPAWNS 
On Spawn;Decr %team_tickets% 
 
# NOW IN YOUR RULZ YOU HAVE YOUR UPDATED %TEAM_TICKETS% VARIABLE TO USE 
On Spawn;If %team_tickets% < 10;PlayerYell %pt% you have 10 tickets left !!! 

 
  



Using “%ini_...%” variables to store longer-term values 
 

ProconRulz variables are generally designed to be reset to 0 at the start of each round. Because 

players join the server, play, and leave never to be seen again, this makes sense in the majority 

of cases. 

ProconRulz v42 onwards includes support for variables that never get reset or deleted, even if 

Procon or ProconRulz are stopped and restarted. These variables can be used by choosing 

names beginning with “ini_”, and the actual value will be saved in an “ini” file in the folder 

Procon\Configs. 

For example: 

1. You have a server called “myclan.net:90210” 

2. You have a rule such as “On Say;Text save;Set %ini_vars_said% %text%” 

3. In-game, some player chats “save hello world” 

At this point, ProconRulz will write to a file Procon\Configs\myclan.net_90210.ini, creating an 

entry: 

[vars] 

said=save hello world 

You can inspect the file using Notepad, or any other text editor, to see what’s been stored in 

there. 

If the file (or the entry) already exists, then it will be updated with this new value. 

Note that %ini_vars_said% can be used throughout your rulz like any other variable, i.e. you can 

update it with the Set, Incr or Decr statements, test it with an If statement, or simply include 

the variable in any action (e.g. Log) and the current value will be substituted. 

In the example %ini_vars_said% above, the variable is stored in a *vars+ section of the ‘ini’ file, 

as an ini-file-value with the name “said”. The general format is:  

%ini_<section name>_<var name>% 

Make sure you include all the elements of the variable name, i.e. “ini”, “<section>” and 

“<variable>”. If you don’t care about a particular section name, just make one up (or use 

“vars”). But the format of the ini variable name is important for ProconRulz to store the value 

properly, and you can confirm that by simply looking at the ini file using Notepad. 



Example uses of %ini_...% variables 
 

You could keep track of the total number of ‘sessions’ on your server (i.e. players joining) with a 
simple rule “On Join;Incr %ini_vars_joins%” 

This will create (or add to) a section: 

[vars] 

joins=77 

You could store the last time each player joined your server with a simple rule “On Join;Set 
%ini_joined_%p%% %ymd%__%hms%” 

Resulting in: 

[joined] 

bambam=2012_08_20_18:23:45 

You could enable/disable certain rulz by including an “If %ini_rulz_teamkills% == 1” condition in 

your ‘team kills’ rulz, and manually editting the ini file with: 

[rulz] 

teamkills = 1 

 

Resetting your ini file 
 

The simplest thing to do would be to quit ProconRulz, inspect your Configs/<server 

name>_proconrulz.ini file with Notepad, and change it however you want. 

However, partly for programming capability and partly to help users that cannot access directly 

the ‘Configs’ folder (e.g. sometimes with  a hosted Procon service), rulz-based commands are 

available to ‘reset’ either the whole ‘ini’ file, just a section, or an individual variable. The basic 

method is to “Set” a corresponding “ini” variable to ZERO: 

Set %ini% 0 will reset the WHOLE INI FILE, i.e. it will become empty 

Set %ini_<section name>% 0 will DELETE THE SECTION 

Set %ini_<section>_<variable>% 0 will DELETE THE VARIABLE (and the value will read as 0)  



Arithmetic in your rulz 
 

ProconRulz supports basic arithmetic, i.e. +, -, *, /. Note that bracketed expressions are not 
supported. 

Arithmetic can be used in Set and If statements.  E.g. as a reminder, the ‘Set’ statement has the 

format “Set <variable> <value>” so most simply, you could ‘set’ a variable %x% to be the sum of 

%y% and %z% with Set %x% %y% + %z%. 

For another example, arithmetic could be tested in-game with the following rulz: 

On Say;Text test; 

Set %server_x% 1 + 2 * 3; Say x = %server_x% 

If %server_x% * 2 > 13;Say 2*x is bigger than 13 

If %server_x% < 2 * 4;Say x is less than 8 

When you chat the word “test”,  

1. variable %server_x% will be set to 1 + 2 * 3, i.e. 7. 

2. If %server_x% * 2 > 13; becomes “If 7 * 2 > 13”, i.e. “If 14 > 13” which succeeds and the 

Say message “2*x is bigger than 13” will be sent. 

3. If %server_x% < 2*4; becomes “If 7 < 2*4”, i.e. “If 7 < 8” which also succeeds and “x is 

less than 8” will be output into chat. 

An obvious example in a first-person-shooter would be testing kills/deaths: 

On Spawn;Incr %_deaths% 

On Kill;Incr %_kills% 

On Kill;If %_deaths% != 0;If %_kills%/%_deaths% > 5;Say %p% has a > 5:1 kill ratio 

The new arithmetic is in the “If %_kills%/%_deaths% > 5” statement which calculates the value 

of %_kills% divided by %_deaths% and if the result is bigger than 5 the condition succeeds.  



Using ‘rounding’ to decimal places for your variables 
 

Once you use arithmetic, you may end up with a variable value such as 1.234567 (i.e. you used 

division somewhere, maybe this was a K/D ratio…). If you want to display this value in a ‘Say’ or 

‘Yell’ command, having so many decimal places might be confusing, so ProconRulz provides a 

way to limit the variable to a smaller number of decimal places. 

Note that the ‘decimal places’ required forms part of the variables name, as a digit following a 

decimal point at the end of the name. I.e. %x.3% will always contain a value with a maximum of 

three decimal places. 

Note that %x.3% and %x% are totally separate variables and should not be confused with each 

other. 

As a simple example “Set %x.3% 1.4567;Say %x.3%” will echo “1.457” in chat (note that the 

value is rounded to 3 decimal digits before being assigned in the ‘Set’ statement, not just 

truncated to that number of places). 

  



Triggers, Conditions and Actions summary list 
 

On Round Admin Say <message> 

On Spawn Admins PlayerSay <message> 

On Kill Protected VictimSay <message> 

On TeamKill Team <part name> AdminSay <message> 

On Suicide Teamsize <N> Yell <message> 

On Join Map <part name> PlayerYell <message> 

On Leave MapMode <part name> Log <message> 

On Say On Kill;…Headshot;… Both <message> 

 On Kill;…Weapon <key>;… All <message> 

 On Kill;…Damage <key>;… Kill [<delay milliseconds>] 

 On Kill;…Range <N>;… Kick <message> 

 On Spawn;..Kit <kit> [<N>];.. Ban <message> 

 On Spawn;..Weapon <weapon> [<N>];.. TempBan [<seconds>] <message> 

 On Spawn;..Damage <damage> [<N>];.. PBBan <message> 

 TeamKit <kit> <N> PBKick [<minutes>] <message> 

 TeamWeapon <weapon> <N> TargetAction <action> 

 TeamSpec <spec> <N> End 

 PlayerCount <N> Continue 

 TeamCount <N>  

 ServerCount <N>  

 Rate <count> <seconds>  

 PlayerFirst  

 PlayerOnce  

 TeamFirst  

 ServerFirst  

 On Say;..Text <string>;..  

 TargetPlayer [<name>]  

 Ping <milliseconds>  

 Set <%varname%> <value>  

 Incr <%varname%>  

 Decr <%varname%>  

 If <%varname%> <compare> <value>  

  



Triggers 

The following listing gives the trigger events and the most commonly used substitution variables 
in each case. For the full list of substitution variables see Appendix 1. 

"On Round": %m% contains the map name, %mm% the map mode 

"On Spawn": %p% contains the name of the spawning player, %pt% his team. In BFBC2 the 
kit/weapon/specialization loadout is also available in %k%, %w% and %spec% but not yet in 
BF3. 

"On Kill": %p% contains the killer name, %v% the victim, %w% the weapon, %d% the damage 

"On TeamKill": as above 

"On Suicide": %p%, %w% and %w% as you would expect for a kill. Note that in BF3 (not BFBC2) 
an admin kill (e.g. with the ProconRulz ‘Kill’ action) will trigger the “On Suicide” rulz, with 
weapon Death. So if you want a typical On Suicide rule for a player that blows himself up or falls 
off a cliff, use On Suicide;Not Weapon Death,… 

"On Join": %p% contains the player name that joined. You can use conditions such as 
‘Protected’ or ‘Admin’ to decide whether to announce something special. 

"On Leave": %p% contains player name 

"On Say": %p% contains the name of the player that just entered the chat. %text% contains 
whatever it is they entered. 

Generally if you have a Weapon, then you can assume Damage will similarly be available. Also 
when you have a player %p% then the player team and squad will be available in %pt% 
and %ps% respectively. 

  



Conditions 

<condition> = (prefix with "Not " to reverse meaning) 
    "Admin": player is a server Admin - typically use Not Admin 

    "Admins": at least one server admin is on the server 

    "Protected": player is admin or in reservedslots list and protected from ProconRulz kicks and 
kills 

    "Team <string>": The name of the players team includes <string> e.g. “Team attack” means 
player is an Attacker in Rush mode 

    "Teamsize <N>": smallest team has N or fewer players 

    "Map <string>": map name or filename contains string, e.g. Map Nelson 

    "MapMode <string>": current map mode contains string e.g. MapMode rush 

    "On Kill;Headshot": kill was with a headshot 

    "Kit <kit> [<N>]": player originally spawned with this kit, >N players on team with this kit incl. 
player 

    "On Spawn;Weapon <weapon> [<N>]": player has this weapon, weapon limit is >N as for Kit 

    "On Kill;Weapon <weapon> [<N>]": player has killed with this weapon >N times 

    "On Spawn;Damage <damage> [<N>]": player has spawned with weapon that can do this 
damage, limit N as Kit 

    "On Kill;Damage <damage> [<N>]": player has already done this damage N times 

    "On Spawn;Spec <specialization> [<N>]": player has this Spec, spec limit is N 

    "TeamKit <kit> <N>": team has >N players spawned with this kit not necessarily including 
current player 

    "TeamWeapon <weapon> <N>": team has >N players spawned with this weapon not 
necessarily including current player 

    "TeamDamage <damage> <N>": team has >N players spawned with weapons that do this 
damage not necessarily including current player 



    "TeamSpec <specialization> <N>": team has >N players spawned with this specialization not 
necessarily including current player 

    "On Kill;Range <N>": the distance of the kill was > N meters. Note BFBC2 +/- 20 meter 
random error 

    "PlayerCount <N>": player has already triggered rule N times during this round: i.e. succeeds 
at N+1) - subst text %c% 

    "Count <N>": same as PlayerCount 

    "TeamCount <N>": rule hit count for Team this round, see PlayerCount - subst text %tc% 

    "ServerCount <N>": rule hit count for Server this round, see PlayerCount - subst text %sc% 

    "Rate <N> <M>": player has triggered this rule N times in M seconds 

    "PlayerFirst": player has triggered this rule for their first time this round 

    "TeamFirst": player has triggered this rule for the first time for their team this round 

    "ServerFirst": this is the first time any player has triggered this rule this round 

    "PlayerOnce": player has triggered this rule for the first time since joining server 

    "On Say;Text <key>": player has just entered say text including this key string  

    "On Say;Text <key>;TargetPlayer": A playername can be found in the say text after <key> 

    "Ping <N>": Player ping (from last listPlayers update) is higher than N 

Note: "OnSpawn;Kit Recon 2..." is equivalent to "On Spawn;Kit Recon;TeamKit Recon 2..." 

  



Actions 
    "Say " <message> 

    "PlayerSay " <message>: only the player involved will see message 

    "SquadSay " <message>: only the player’s squad will see message 

    "TeamSay " <message>: only the player’s team will see message 

    "VictimSay " <message>: On Kill only, the player killed will see message 

    "AdminSay " <message>: only in-game admins will see message 

    "Yell  " [<N>] <message>:  Yell with N seconds on-screen time (default for N in plugin settings) 

    "PlayerYell " [<N>] <message>: only the player involved will see Yell message 

    "SquadYell " [<N>] <message>: only the player’s squad will see Yell message 

    "TeamYell " [<N>] <message>: only the player’s team will see Yell message 

    "Log " <message>: log to procon chat log but don't use Say 

    "Both " <message>: Say and Yell same message 

    "All " <message>: Say and Yell and Log same message 

    "Kill [<N>]": Kill after N milliseconds, for default see plugin setting 

    "Kick " <message> 

    "Ban " <message>: perm ban using EA ID 

    "TempBan " <N> <message>: temp ban for N seconds using EA ID 

    "PBKick " [<N>] <message>: PunkBuster kick (for optional N minutes) using PB GUID 

    "PBBan "<message>: PunkBuster ban using PB GUID 

    "TargetAction "<action> : <action> is applied to target after confirmation 

    "Exec "<game server rcon command> : <action> is applied to target after confirmation 

  



Appendix 1. List of substitution variables 
Anywhere a message appears in a rule, e.g. "Say %p% just spawned", the following 
substitutions can be embedded in the message:  

Subsitute 
string 

Meaning 

%p% Player name (On Spawn, or killer on a kill) 

%pt% 

%ptk% 
Player team name, e.g. Attackers, US Army (%ptk% is team key) 

%ps% 

%psk% 
Player Squad (%psk% is player squad key) 

%v% Victim name (On Kill|TeamKill|Suicide rules only) 

%vt% Victim team name 

%k% 

%kk% 
Player kit on spawn, e.g. Recon (%kk% is the kit key) - not available in BF3 

%w% 

%wk% 

Weapon (On Kill), e.g. SVU Snaiperskaya Short. Or list of weapons On Spawn. 
(%wk% is similar, but contains the weapon key) 

%d% 

%dk% 

Damage (On Kill) e.g. SniperRifle or VehicleHeavy. Or list of damage types On 
Spawn (%dk% is the damage key) 

%spec% 

%speck% 

Specializations (On Spawn only) e.g. 12-Gauge Sabot Rounds (%speck% is the 
specialization key) – not available in BF3. 

%r% 
Range (On Kill) - note each player position is randomised by 10 meters – not 
available in BF3. 

%n% 

%ts1% 

%ts2% 

Teamsize of current smallest team 

Teamsize of team with key 1 

Teamsize of team with key 2 



%pts% Teamsize of team of current player 

%c% Count of the number of times this player has triggered this rule 

%tc% Count of the number of times this player's TEAM have triggered this rule 

%sc% Count of the number of times ALL PLAYERS ON SERVER have triggered this rule 

%h% Headshot (On Kill) - substituted with "Headshot" or blank 

%m% Map name e.g. Nelson Bay 

%mm% Map mode e.g. Rush 

%t% Target playername found from previous TargetPlayer condition 

%targettext% 

Text remaining for ‘target’ after a ‘Text’ condition. E.g. after an admin says 
“xkick bam idiot”, triggering the following rule: “On Say;Admin;Text xkick;…” 
then %text% will be “xkick bam idiot”, %targettext% will be “bam idiot”. 
%targettext% is also updated after a successful TargetPlayer condition, leaving 
%targettext% as the text after the player name. E.g. with TargetPlayer added 
to the rule above, %t% will be “bambam” (assuming playername “bambam” is 
on the server) and %targettext% will be “idiot”. 

%ping% Ping milliseconds for current player 

%text% Text from player On Say event in this rule 

%pb_guid% PunkBuster player GUID 

%ea_guid% EA player GUID 

%ip% IP address of current player 

%pcountry% 

%pcountrykey% 

Player country (e.g. Germany) in local language of server (e.g. Deutschland). 
International code for this country (e.g. ‘de’ or ‘pl’) is in %pcountrykey%. FYI 
country keys are in lowercase (thanks tarreltje). 

%vcountry% 

%vcountrykey% 
As above except for the victim in an On Kill;.. rule 

%score% The player score as reported in-game via the Tab key, i.e. the number of 
‘points’ the player currently has. This is identical to 



%server_score[<playername>]% so you can look up the score for the ‘current’ 
player with %score% (or %server_score[%p%]%), or for another player by 
inserting the player name into the variable (e.g. the score of a victim in a kill 
would be %server_score[%t%]%) 

%team_score% 
Score for team of current player, typically number of tickets remaining. For 
details see section of this manual explaining this variable. This is a tickets 
count, not a ‘player score’ type value as in %score% above for each player. 

%hms% 

%ymd% 

%seconds% 

Current time hours-mins-secs in 24-hour clock e.g. “18:26:33”. 

Date in year-month-day e.g. 2012_07_17 

Time in seconds (actually since Jan 1st 2012). This value is only likely to be 
used with some previous value subtracted, to get the difference in the time in 
seconds. 

 

  



Appendix 2. List of all weapons, kits and specializations 

Kits 

Description Kit key 

No kit None 

Assault Assault 

Special Ops Specialist 

Engineer Demolition 

Support Support 

Recon Recon 

Weapons 
If you want to see the definitive list of weapons in your game, see the ProconRulz plugin 
‘Details’ tab – this will list the weapon keys actually available to the plugin. This list below is a 
snapshot from BF3 taken when this document was written.  

Description Weapon key Damage Kit 

870 Combat 870MCS Shotgun None 

AEK-971 Assault Rifle AEK-971 AssaultRifle Assault 

AKS-74u Assault Rifle AKS-74u SMG Demolition 

AN-94 Abakan Assault Rifle AN-94&Abakan AssaultRifle Assault 

AS Val Supressed Assault Rifle AS&Val AssaultRifle None 

DAO-12 Striker Shotgun DAO-12 Shotgun None 

Death Death None None 

Defibrillator Defib Melee Assault 

F2000 Assault F2000 AssaultRifle Assault 

FAMAS Assault Rifle FAMAS AssaultRifle Assault 

FGM-148 Javelin FGM-148 ProjectileExplosive Demolition 

FIM-92 Stinger FIM92 ProjectileExplosive Demolition 



Glock 18 Pistol Glock18 Handgun None 

HK53/MP5 Assault Rifle HK53 AssaultRifle None 

Jackhammer/MK3A1 Shotgun  jackhammer Shotgun None 

JNG90 Sniper Rifle JNG90 SniperRifle Recon 

BF Premium Knife Knife_RazorBlade Melee None 

L96A1 Sniper Rifle L96 SniperRifle Recon 

LSAT Light Machine Gun LSAT LMG Support 

M416 M416 AssaultRifle Assault 

M417 Sniper Rifle M417 SniperRifle Recon 

M1014 Semi-automatic Shotgun M1014 Shotgun None 

M15 Anti Tank Mine M15&AT&Mine Explosive Demolition 

M16A4 Assault Rifle M16A4 AssaultRifle Assault 

WWII M1911 .45 M1911 Handgun None 

M240 Maschine Gun M240 LMG Support 

M249 SAW M249 LMG Support 

M26 MASS Shotgun M26Mass Shotgun Assault 

M27 IAR  M27IAR LMG Support 

M320 Grenade luncher M320 ProjectileExplosive Assault 

M39 Sniper Rifle M39 SniperRifle Recon 

M40A5 Sniper Rifle M40A5 SniperRifle Recon 

M4A1 Carbine M4A1 SMG Demolition 

M60 LMG M60 LMG Support 

M67 Grenade M67 Explosive None 

M9 Pistol M9 Handgun None 

Baretta M93R M93R Handgun None 

MedKit Medkit Nonlethal Assault 



Melee Melee Melee None 

MG36 MG36 LMG Support 

MK11 Sniper Rifle Mk11 SniperRifle Recon 

Barrett M98B Sniper Rifle Model98B SniperRifle Recon 

MP7 Maschine Gun MP7 SMG None 

Pecheneg Maschine Gun Pecheneg LMG Support 

PP-19 Bison SubMaschine Gun PP-19 LMG None 

PP-2000 SubMaschine Gun PP-2000 SMG None 

QBB-95 Light Machine Gun QBB-95 LMG Support 

QBU-88 Sniper Rifle QBU-88 SniperRifle Recon 

QBZ-95 Assault Rifle QBZ-95 AssaultRifle Demolition 

Repair Tool Repair&Tool Melee Demolition 

Roadkill RoadKill None None 

RPG-7 Anti Tank rocket-propelled 
grenade launcher 

RPG-7 ProjectileExplosive Demolition 

RPK-74M Light Maschine Gun RPK-74M LMG Support 

SCAR-L Assault Rifle SCAR-L AssaultRifle Assault 

SIG SG 550 Assault Rifle SG&553&LB SMG Demolition 

Saiga 20K Semi Siaga20k Shotgun None 

Simonow SKS-45 Rifle SKS SniperRifle Recon 

SMAW Anti Tank weapon SMAW ProjectileExplosive Demolition 

SPAS-12 Shotgun SPAS-12 Shotgun None 

SV98 Snayperskaya SV98 SniperRifle Recon 

SVD Sniper Rifle SVD SniperRifle Recon 

Aug A3 Assault Rifle Steyr&AUG AssaultRifle Assault 

Taurus .44 Mag revolver Taurus&.44 Handgun None 



Type88 Maschine Gun Type88 LMG Support 

USAS-12 automatic Shotgun USAS-12 Shotgun None 

A-91 Assault Rifle Weapons/A91/A91 SMG Demolition 

AK-74 Assault Rifle Weapons/AK74M/AK74 AssaultRifle Assault 

G36C Assault Rifle Weapons/G36C/G36C SMG Demolition 

G3A3 Battle Rifle Weapons/G3A3/G3A3 AssaultRifle Assault 

C4 Explosive Weapons/Gadgets/C4/C4 Explosive Support 

Claymore mine 
Weapons/Gadgets/Claym
ore/Claymore 

Explosive Support 

KH2002 Assault Rifle 
Weapons/KH2002/KH200
2 

AssaultRifle Assault 

Knife Weapons/Knife/Knife Melee None 

Magpul Personal Defense Rifle 
Weapons/MagpulPDR/M
agpulPDR 

SMG None 

MP412 REX Revolver 
Weapons/MP412Rex/MP
412REX 

Handgun None 

MP-443 Grach Pistol Weapons/MP443/MP443 Handgun None 

MP-443 Grach Pistol (GM) 
Weapons/MP443/MP443
_GM 

Handgun None 

P90 Weapons/P90/P90 SMG None 

P90 (GM) Weapons/P90/P90_GM SMG None 

SA-18 IGLA Air Defense 
Weapons/Sa18IGLA/Sa18
IGLA 

ProjectileExplosive Demolition 

SCAR-H Assault Rifle 
Weapons/SCAR-H/SCAR-
H 

SMG Demolition 

UMP-45 SubMaschine Gun 
Weapons/UMP45/UMP4
5 

SMG None 

L85A2/SA80 Assault Rifle 
Weapons/XP1_L85A2/L85
A2 

AssaultRifle Assault 



ACW-R Assault Rifle Weapons/XP2_ACR/ACR AssaultRifle Demolition 

L86A2 Light Machine Gun Weapons/XP2_L86/L86 LMG Demolition 

M5K Submachine Gun 
Weapons/XP2_MP5K/MP
5K 

SMG None 

MTAR-21 Assault Rifle 
Weapons/XP2_MTAR/MT
AR 

AssaultRifle Demolition 

 

Damage 
None, Nonlethal, Impact, Melee, Handgun, AssaultRifle, LMG, SMG, SniperRifle, Shotgun, 
Explosive, ProjectileExplosive, VehicleWater, VehicleAir, VehicleStationary, VehicleLight, 
VehicleHeavy 

Specializations 
None available to admin tools yet in BF3  



Appendix 3. BF3 Maps 
 
Rulz can be limited to certain maps using the Map <name> condition, where <name> is a 
substring of either the map ‘key’ (e.g. MP_Subway) or the human-readable name. For normal 
usage it is recommended the map key is used, as there is less risk 
 
 Map  Human-readable name  
MP_001  Grand Bazaar  
MP_003  Teheran Highway  
MP_007  Caspian Border  
MP_011  Seine Crossing  
MP_012  Operation Firestorm  
MP_013  Damavand Peak  
MP_017  Noshahr Canals  
MP_018  Kharg Island  
MP_Subway  Operation Metro  

  

XP1_001  Strike at Karkand  
XP1_002  Gulf of Oman  
XP1_003  Sharqi Peninsula  
XP1_004*  Wake Island  

  



Appendix 4. BF3 Map Modes 
 
It is common to want to limit rulz to certain map modes, e.g. you might want to ban Claymores 
only on ‘Rush’ maps (this is just an example…). This control is provided with the 

MapMode <mm> 
condition, where <mm> is the key for the map mode as listed in the table below. Note that 
<mm> is tested as a substring of the current map mode, i.e. MapMode Conquest will succeed 
for ConquestLarge0, ConquestSmall0 and ConquestSmall1. 
 
So, to limit Claymores on rush maps, you could use the following rule: 
On Kill;MapMode Rush;Weapon Weapons/Gadgets/Claymore/Claymore;Say %p% no Claymores 
permitted on Rush maps;Kill 100 
 
 MapMode  Human-readable name  Intended player count  
ConquestLarge0  Conquest64  Up to 64  
ConquestSmall0  Conquest  Up to 32  
ConquestSmall1*  Conquest  Up to 32 (*Not on Wake 

Island)  
RushLarge0  Rush  Up to 32  
SquadRush0  Squad Rush  Up to 8  
SquadDeathMatch0  Squad Deathmatch  Up to 16  
TeamDeathMatch0  Team Deathmatch  Up to 24  

 

  



Appendix 5. Sample In-Game Admin Plugin using ProconRulz 
 
The  earlier section in this manual described how a set of rule for in-game admin actually works. 

If you want to cut to the chase, here is a set of sample rulz that would provide a some useful in-

game admin commands. 

In every case, <playername> can be any partial string that uniquely identifies a player currently 

on the server. E.g. “!slay bam” will successfully kill player “bambam”. If there’s another player 

in addition to bambam called “simbam” the command will do nothing, and you would need to 

type “!slay bamb” or any other unique substring (“!slay amb” would also work). This is useful to 

nail hacker types that have a player name like “00!!|||!!III!!00” – just type “!kick 00” (or !kick 

||) –there is no need to try and match their whole name. In practice the approach works very 

well and I prefer it to the “approximate match of full name with confirmation” approach of the 

in-game admin plugin included with Procon. 

!slay <playername>   Admin only 

!kick <playername> [<reason>] Admin only 

!ban <playername> [<reason>] Admin only 

!nextlevel    Admin only 

!yell <message> 

!pyell <playername> <message> 

Here are the actual rulz – you can add “Admin” conditions to the yell commands if you’re 

paranoid: 

On Say;Text !slay;Admin;TargetPlayer;PlayerSay %t% SLAYED;TargetAction Kill 100 

On Say;Text !kick;Admin;TargetPlayer;PlayerSay %t% KICKED;TargetAction Kick %targettext% 

On Say;Text !ban;Admin;TargetPlayer;PlayerSay %t% BANNED;TargetAction Ban %targettext% 

On Say;Text !nextlevel;Admin;Exec admin.runNextLevel 

On Say;Text !yell;Yell 5 %targettext% 

On Say;Text !pyell;TargetPlayer;PlayerSay (%t%) %targettext%; TargetAction PlayerYell %targettext% 

 

  



Glossary 
 

  

Condition If a given rule has a trigger (see glossary) matching the current event from the 
game server, then multiple conditions in that rule can then be tested to 
confirm the application of the actions in the same rule. A typical condition 
could be “Weapon RPG-7”. The way the condition is interpreted will vary 
depending on the trigger. With an “On Spawn” trigger (i.e. “On 
Spawn;Weapon RPG-7;…”), the Weapon condition will succeed if the player 
spawns having selected that weapon in his loadout. With an “On Kill” trigger 
the condition will succeed if the weapon in the rule was the one used for the 
kill. 

Damage Each weapon has an associated “Damage” type, for example the rocket-
propelled grenade weapons (like M320, SMAW, RPG-7) have damage type 
“ProjectileExplosive”. If you want a rule to apply to a general class of weapons 
you can use a “Damage” condition in your rule rather than “Weapon”, and it 
will then apply to weapons that cause that damage. 

Event A real-time packet of data that ProconRulz receives from the game server. For 
example, every time a player is killed BF3 will send a ‘kill’ event across the rcon 
(see glossary) interface, containing the player name that caused the kill, the 
player name that was killed (i.e. the victim) and the key of the weapon that 
was used. ProconRulz allows rulz to be associated with a variety of events 
available from the server via the use of “On …” trigger (see glossary) clauses in 
the rules. 

Plugin An extension feature for Procon, many of which have been written by 
contributors providing additional scripted admin functionality, e.g. SpamBot 
which supports a user-customizable ‘Say’ message to appear in-game at 
regular intervals. ProconRulz is a particularly sophisticated plugin that allows 
the user to define the incremental functionality required. 

Procon An open-source game admin utility that connects to a game server’s rcon 
interface, provides a real-time status display of the server, e.g. the players 
connected, current map, K/D ratio’s, and provides a simple end-user interface 
to apply basic commands, e.g. a player can be kicked by clicking on their name. 
Procon is extensible via general support for plugins. 

ProconRulz ProconRulz is a plugin for Procon that is rapidly evolving to be a general-
purpose meta-plugin. I.e. ProconRulz allows the user to define a script that the 
plugin interprets in real time, taking user-specified actions as events occur in 
the game. The origin of ProconRulz was to allow the most simple rulz to be 
specified limiting players spawning with certain weapons, e.g. for max 2 
snipers-per-side, the single rule “Kit Recon 2” could be used. ProconRulz now 
has a wide range of events that can be recognized, conditions that can be 
tested, and actions applied. Since version 35, ProconRulz has support for 
general-purpose integer variables, so arbitrary counts can be accumulated and 



tested. 

rcon Remote Console interface, a text protocol provided by most game servers that 
transmits status information out to receiving clients (e.g. when a map changes 
on the server, a text message is sent on the rcon interface confirming this 
event and giving the next map name). The simplest client could simply be a 
text terminal where a user could watch the messages stream by. The rcon 
interface is two-way, i.e. you can send in very basic text commands, for 
example to kick a player. Game server hosting companies give their customers 
the IP address and port of the game server, which is then used in Procon. 

rulz variable An element of a rule used to store a value, given a name such as %kills%. 

substitution 
variable 

A name such as %p% which is replaced with a value from the game (in this 
case ‘player name’) when the rule is executed. 

trigger ProconRulz requires an “On …” clause for each rule that says which event from 
the game server will cause a given rule to be applied.  Every rule has an 
associated trigger – if the “On …” clause is omitted then ProconRulz assumes 
the trigger is the one given in the nearest rule above. For example, the most 
common trigger clauses are “On Kill” and “On Spawn” which cause rulz to be 
applied when kills occur and when players spawn respectively. 

Weapon This is what you’d naturally expect, the instrument used to kill, injure or 
damage a player or vehicle. E.g. the SMAW anti-tank rocket-propelled 
grenade. Note that each weapon has a key e.g. “SMAW”, and also a 
description that varies by country e.g. “SMAW anti-tank rocket-propelled 
grenade”. ProconRulz uses the key in Weapon conditions, as that is always the 
same value regardless of the language localization used in the game. Each 
weapon that kills a player has an associated “Damage” type (see glossary). 

  

 


